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MODELING AND INFERENCE FOR POSITIVELY DEPENDENT K
VARIABLES IN DICHOTOMOUS EXPERIMENTS 1~

ABSTRACT

Multivariate models with positively correlated components have found

wide applicability in reliability and biostatistics. Perhaps the best

known and moat widely used such model is the multivariate exponential

distribution due to Marshall and 01kmn (JASA, 1967). We study a discrete

analogue of the latter model. Specifically, we consider a model for

random vectors Y whose components are positively correlated and have

Bernoulli marginal distributions. The construction of the model

reflects the fact that the k component system under study may be

subjected to independent shocks selectively fatal to any subset of

components. A special representation of the probability function of

Y is developed which proves useful in the inference questions pursued.

While maximum likelihood estimation of the model parameters proves

intractable, we obtain in closed form an alternative estimator which we

show to be asymptotically equivalent to the MLE and, in fact, equals

the MLE with limiting probability one. Similar results are obtained

for a natural submodel whose parameter space is of substantially lower

dimension. A Monte Carlo study sheds light on the sample size needed

for the asymptotic results to take hold.



I. INTRODUCTION

Consider the vectors in (0,1)k as being ordered from the smallest,

(0,0,0,...,0) to the largest (1,1,1,...,1) according to the usual order-

ing, that is, lexicographically. Attach to the ith such vector the

kprobability pI E[0,13, for i-1,2,...,2 , subject to the constraint

p - 1. The description above defines the most general multivariate
i=1

Bernoulli distribution, and any k-variate distribution with Bernoulli

marginals can be fully described by identifying the vector p above.

A useful reference on such distributions is the paper by Bahadur (1961).

Inference questions for the general multivariate Bernoulli distribution

are easily resolved; for example, the maximum likelihood estimate of i

from a sample of size n is simply the relative frequency of occurence

of the ith vector in {0 ,1)k
. There are, however, a number of interesting

subclasses of multivariate Bernoulli distributions which arise naturally

in applications but lend themselves less readily to statistical analysis.

This paper is dedicated to the study of one such class.

Multivariate models which postulate positive dependence among the

components of a random vector have found substantial applicability in

reliability theory and in biostatistics. For example, the lifetimes of

items on test may well be positively correlated, particularly when these

items are subject to shocks that threaten two or more items simultaneously,

or when some items experience wear which serves to increase the load on

other Items on test. The multivariate exponential distribution of
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Marshall and Olkin (1967) arises naturally in several reliability con-

texts, tncluding a scenario involving a collection of shocks selectively

fatal to one or more components in a coherent system. In constructing

competing risk models in problems arising in the health sciences, one

often encounters positive dependence due to the reduction of resistance

to one disease that might be caused by the presence of a second disease.

The model to be studied here may be viewed as a discrete analogue to the

multivariate exponential distribution in that we will motivate it in

much the same way. As we shall see, however, the multivariate Bernoulli

model we study is quite general and may be viewed as a discretized

version of any continuous multivariate model describing the joint life-

time of several components subjected to selectively fatal shocks. Al-

ternative notions of positive dependence in reliability have been

studied by several authors, including Esary, et al. (1972) and Shaked

(1975). It is well known that these notions arc all equivalcnt when

dealing with Bernoulli variables

Consider a k-component system whose lifetime is under study. Sup-

pose the status of the system is to be observed at some distinguished

time T0 which could, for example, be the so-called mission time of the

system or of the individual components. The observation may be recorded

S a vector Y - (Yl l2eyk) where, for each L. Y is one or zero

depending upon whether the ith component is working or has failed by

time TO . We will formulate a model for the distribution of Y which

reflects the fact that the system may be subjected to independent shocks
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selectively fatal to any subset of the k components. To this end,

define dk - (O')k - 0, that is, let ok be the collection of all k-ttples

of zeros and ones with the exception of the zero vector. Each element

sEW k corresponds to a shock selectively fatal to those components i for

which s = 1. For each SEak, define

0 if the shock corresponding

Z = to s occurs by time TO ' (1.1)

~ I otherwise.

and define

P - P(Zs m 1). (1.2)

(Our notation is precisely that of Marshall and Olkin (1967).) Denoting

the binomial distribution with parameters n and p by 12(n,p), we have

that Ze ~ .(1,p s) for each sEs*k. We may now define the aforementioned

vector Y componentwise as

Y (s=  s Z - mnliz . (1.3)

kk

We will use the notation MVB(2 -1) to denote the distribution of Y in

equation (1.3), and, in general, the notation MVB(n), for various integers

n, to denote particular submodels of MVB(2 k-1) with exactly n pars-

mters. Equation (1.3) may be interpreted to mean that the ith component

will survive until time T if and only if no shock that is fatal to the
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ith component occurs by time To . The shock that is fatal to the ith

component alone has the dual interpretation of being the embodiment of

all factors that might prove fatal to the ith component but have no

effect whatever on any other component.

In section II, we study the properties of the shock model we have

described in the preceding paragraph. In particular, a representation

of the probability mass function of Y (or any subvector of Y) is

developed. This representation proves to be quite useful in the statis-

tical inference we pursue in later sections. In section III, we consider

maximum likelihood estimation of the parameters of our multivariate

Bernoulli distribution. We investigate and comment on the difficulties

involved in obtaining the ILE in closed form, and we then produce (in

closed form) an alternative estimator which we show is asymptotically

equivalent to the MLE. In fact, the proposed estimator is equal to the

MLE with limiting probability one. In section IV, we investigate maxi-

mum likelihood estimation for a natural submodel of VIB(2 k-1),

and derive results which are comparable to those in section III. In

section V, we summarize the results of a modest Monte Carlo study which

sheds light on the sample size required to get reasonable results. The

simulation study motivates our discussion of the primary domain of

applicability of our results, namely, that of systems consisting of

components subject to "rare shocks." We summarize our results, indicate

some promising directions for future work, and make a number of con-

cluding remarks in section VI.
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II. CHARACTERISTICS OF THE MVB(2 k-1) MODEL

To motivate the distribution theory presented in the Lemma and

Theorem below, we begin by examining the simplest model, that for a

two-component system. When k-2, we are concerned with the representation

of P(Y - y) for y EfO,11 2 in terms of the three model parameters

P0 1, p1 0 and pl1. Clearly, the following representation is one possibility:

P(Y - (1,1)) - P1 0 P0 1 P 1 1

P(Y - (0,1)) - (1-P1o)Polp1l

(2.1)

P(! - (1,0)) - (1-po 1)Pol

P(Y - (0,0)) - (1-P1 )+p (1-Plo)(-p 1 ).

The character of such representations for arbitrary k is already apparent

from equation (2.1).. It would seem that in general the probability

P(Y - y) could be written as a sum of terms, each term being a product

of certain parameters p5 or their complements (1-p s). A systematic

approach to this sort of representation would proceed as follows: Con-

sider the tree consisting of the eight branches which represent all

possible combinations of the three dichotomies Z -0 or Z -llsE.P,}.
TiS ~

I This tree is pictured below:
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Probability Y
Z i %11 PolPloPll Ii-3l . pp 1 p (1,1)

p/pPo (1-P 1 -P) (0,0)
7.31(1-P)P1 (1,0)

110 01 o(l-p10 )(1-p11 ) (0,0) (2.2)

(1-p01)P10  01

11 0 01 (l-pol)plo(l-pll) (0,0)

Z1 0
(PoI ( 1-p)(-plo)pll (0,0)

Z11 -0 (l-pol)(l-Po1 0 )(l-pl I ) (0,0)

The probabilities associated with each of the four possible values of

Y may be obtained from this tree simply by grouping branch probabilities

appropriately. A general representation for the probability mass function

of Y MVB(2 k-1) may be obtained in the same manner. However, since

there are 2k-1 shocks, the tree from which probabilities are to be

identified will have 2 branches. Thus, the representation along

these lines, while conceptually simple, poses some practical difficulties.

This approach can be made more appealing by applying combinatorial ar-

guments which facilitate the counting of ways in which a specific value

of Y can arise. We do not pursue this further, however, because we have

found this type of representation less useful in inference problems

than the representation described in Theorem 2.1. As a closing remark

on the representation discussed above, we note that the probabilities

* *--. ----..
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22~k-

associated with the 22 1 branches of the aforementioned tree are simply

the terms of the polynomial expansion of the right hand side of the equation

below

1 TT (ps + (l-ps)) (2.3)fe d,) ~
1!-. k

Before establishing an alternative representation of P(Y = y) in

the general model, we introduce the following notation, where all vectors

are k-dimensional.

0 - (0,0,0,...,0)

It "s U (01 24
k k u (2.4)

y* 1 - y (2.5)
k

lyl- -I(yl...,Syk )I =I -li (2.6)

xY (xlylx 2 Y2 ,...,xkYk) (2.7)

Ik(Y) f a EX * st-l, i-l,.. . ,k) (2.8)

Now, let j be an integer less than or equal to k , and let N (n i , i-l,....,j)

be a set of j integers such that 1 < n1 < n2 <... < nj < k. We will have

occasion to consider mappings n o ' +d of the form

7N I s~ (s 108,2,..'aSk ) - (inl,..sn ). (2.9)
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When confusion seems unlikely, the mapping ITN will be denoted by TT

or simply by TI.

We need the following preliminary result.

Lemma 2.1. For any fixed but arbitrary set Nj of J ordered positive

integers, with J _ k and n < k,

P(Y nY n =  Yn n Ps (2.10)
2 A

where A- (a E.P an 1 for some i,...,3}
k n

Proof. P(Y M""-Y - 1)

M P(TT7z m..'R z - 1)

M P(Zs M I -nt for some i)

- TTP(Z - I),
EA A

the last step being a consequence of the independence of the Z variables.

Theorem 2.1. Let N be a fixed but arbitrary set of j ordered positive

integers, with J k and n _ k. For every zE ,o, we have

P P(r Y - (-l) I 'Z''Tp5  (2.11)
iEIjQ) ATT w

vhere T and A (.Es .)w 0o.
kw
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Proof: The proof proceeds by induction on JY*y, the number of zero components

of the vector y , where the dimension J of y may vary between I and k.

We show that for each fixed k , the representation in (2.11) holds for

each Jml,...,k and for all values of 1y*j < k. If Jy*j - 0, (2.11)

follows from Lemma 2.1. Now suppose that 1y*j - h, where I < 1 < k.

Assume that for each J-l,...,k, and for all possible mappings TT of the

form (2.9), the representation in (2.11) holds for P(TTjY - s) whenever

seaD is such that Is* < h. Since y has at least one zero, we may

assume without loss of generality that yl M 0. Define T1* - by

l*s T (819.0"s) (s2s3)

and define yo Ed by

o m{Yi if i > 1

I if i - 1.

We then have

P(TT*TT Y y) - P(Yn2 ...,yn = y
n2j

a P(TTy y) + P (Ty Y yO)

or

P(-TYy) a P(f*Y ymTT* y) - P(TTY-y).

Since both 1T*y and y have exactly h-I zero components, we have by

the Induction hypothesis that
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P(TTY y) E D (-4) vTTy TT P~ 9~ 1 (TT Y)  A"* ~
J"-1 V

I Y (2.12)

The two sums in (2.12) can be combined upon noting the following:

(i) For any w Cj(). .2 - , and

I (y° ) - (w EI () : wi n 13.

(ii) Each vEI M*y) may be associated with the vector

w(v) - (0,v 1 ... ,v 1) E 1(y); moreover, Iv -f*l y. jw(v) -yI

and (sEP. :(Tt*TT s)V0) I E k :[ Tjs)tw(v)3=0).
k J!..

(iii) As v ranges over IJ (T y), w(v) traces out exactly one copy

of the set (wE I (Y) :w i = 0).

We may thus write

P(TTY-y) .w Y .>l" {Tp

3w I =0

( - )
+ w (- l ZlTT p

)1W - I

wE (he pro

completing the proof.
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The representation in (2.11) gives the distribution of the random

vector Y and shows that the marginal distribution of any subvector has

the same form. We state as a corollary the representation result to be

used in our study of interence questions.

kk

PQ x I (z (-I - EWk:(2.13)

k

8 w o

We have mentioned above that the model under discussion has the property

that components of a vector Y described by the model are positively corre-

lated. This is easily demonstrated by noting that

Y _Yj B(1, 'T ps) so that

U (Eksr ]
k rr

orP (ralsE k :sor 1bc I = j-

C o v( s, O' : s P S

r-i k rk k j

wiLth *quality holding if and only if p1  0 for some a E U isE'IC a -1
8 ~ ~ rinij r

or P's I for all sEvP forvwhich 9 a, *.0 kc£

- ~ "law
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The simplest possible multivariate Bernoulli distribution is the

model in which components Yi are independent and identically distributed

as B(lp). Conditions on the parameters of the model MVB(2 k-1) which

result in partial or complete simulation of the model with i.i.d. com-

ponents are as follows: (i) Dependent components with identical marginal

distributions result if and only if ps = Ps, for any s, s' E lk for which

181 - 1s'1, (ii) Independent components with nonidentical,nondegenerate,

marginal distributions result if and only if p s I for every sEW k

for which 11 > 1 (that is, only shocks fatal to a single component have

a positive probability of occurrence), (iii) The Yi. iml,...,k are non-

degenerate, independent and identically distributed iff the conditions

on s E k in (i) and (ii) above are simultaneously satisfied.
k

III. ESTIMATION FOR MVB(2 k-I).

We begin this section with an examination of the problem of maximum

likelihood estimation of the parameter e for the model MVB(2 k-1). To

fix ideas, we briefly discuss the case k-2, that is, the two component

model. Let Yl,"*.Yn be a sample of size n from MVB(2 2-1), and for

2
each yE(O,0) , let N be the frequency of the observation Y = y. A

- y

complete discussion of the case k-2 involves consideration of the 15 data

configurations where each N is zero or nonzero, with at least one being

nonzero. Suppose, for example, N > 0 for each y . Then the likelihood
y

function may be written as

L - C(l - p1l) +p 1 1 (l - pl0 )(1 - p 0 1)]O[(l -p0)Pl0Plll10

10 1 1 Nlpi£ (1 - p1)0Pl p01P11 (3.1)

..--.
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It is clear even in the simple case being considered that maximum likeli-

hood estimation is fairly cumbersome. The system of equations to be

solved, that is, -&On L - 0 for sEd are highly nonlinear and eachS as- 2
involves all parameters in a complex way. It can be shown (by direct

maximization) that the MLE when N > 0 V y is given by

N

Pl0 -N + N 01
11 01

N 1
Pol N 10 (3.2)N111

P11  - O -

when N1 1N0 0 > N0 1N10, and is

A N 1 1 +N 1 0
PLO n

N 11 + 01
POl n(.)

when NI1No0 < No1N o. We are, in fact, able to find the MLE in closedform for the case k-2, but will not pursue direct maximum lkelihood

estimation further for several reasons. It is clear that direct maximum

likelihood estimation is unpromising, involving, in the case of arbitrary

k, the examination of 2 -1 data configurations, each associated with a

highly complex system of (2k 1) equations. Moreover, there is no guarantee
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that any one of these systems has a closed form solution. Indeed, we

have found that there is no closed form solution of the likelihood

equations in some of the special cases we have studied. We will

thus turn our attention to the construction of an alternative estimator.

We show in the sequel that this estimator is asymptotically optimal and,

in fact, is equal to the MLE with limiting probability one.

Let I,'..n be a random sample from MVB(2 k-I), and define Ny
for each y Ed as

N M frequency of occurrence of Y = y

If Q 9 P(Y -y), then the vector N - (No,...,N1 ), with components

lexicographically ordered, has a multinomial distribution with parameters

n and Q. The MLE of Q is given by

N
Q = - for yEdX. (3.4)

y n e k

The estimator we develop is derived from an attempt to invert the

functional relationship

Iw-y_
Qy (-1) ~ ~ PS (3.5)

w E Ik(Y) IsEd k : swO0

for each yE' to find p as a function of Q. Under well-known

conditions, the estimate of p obtained from (3.5) and (3.4) will be

the XLE. These conditions do not obtain in the present problem; we are

nevertheless able to use the invariance property of MLE's to advantage.

We proceed with the inversion of the relationship in (3.5).
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Let yE.,k be such that ly " 1. Then Iy*I - k-i, and we obtain

from 03.5)

Q . T TPs - "1-1 ps (3.6)

y , .,
O y sE

- 4-'

Since QI FT P we obtain from (3.6) that, provided QI #0,

s 1
-k

Q. -1

QI

- (3.7)
Q1 + Q*

Now let yE0k be such that j = j < k, and suppose ps is expressed

as a function of Q for all s for which Il < J. From (3.5) we have

1W - 4-

Q1 (-1) ' l '." p
* -0~ ~"E Ik(*) [L¢dk : s,,"01

W E Tr C- '

ra TT * :s a" *' ;. 4 ,o
1-0

k~y*)1W -Y* '1 1 - w-)
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TT p5

"i --lylt -1 lyl
+ (-1) P +)

Il ~

[w I k(y*):IWYI-il (BE -Pk: aw - 0

-1 -1Py TrT PS
(: E.Dk : y*UO,I5I <1 Y13

+% (-1 (Y)~+ I() 1 [ ps + ( 1 )(y)

*Iw-y~mi r=l ~sw-0, sImr)[W 
(3.8)

Verification of the last equation above is facilitated by noting that

Iyl-i is the number of zero components of w when 1w-y* I - 1, and

that r I since 4 does not contain 0. Equating the first and last

terms in the preceding chain of equalities, and solving for py, we

obtain
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p=- - (1) 1 TT P

( fE a y*-o Is I I A

S TT 0)(39

s y* - 0)

Equation (3.9) may be derived from (3.8) by noting that for WEIk(y*),

sw - 0 -> s y* - 0. In equation (3.9), p is expressed recursively

as a function of Q and (p :19I < lyl], where 1 < lyl < k.

We may determine p, from the equation

QI
~1-TT P ,

9E-k

that is, as

P1  Q1 77 T (3.10)

Cs I&k:Is k

The estimate p is obtained by replacing Q and p with Q and p in

equations (3.7), (3.9) and (3.10).
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^I
Several remarks are in order. First, it is clear that£ is undefined

when nQl = N I  0. In fact, the process by which p was obtained

requires that ps 0 0 sEa'k (indeed, this implies Q1 0 0 by (3.10)).

JI
Finally, even when p is well defined by the process described above, it" k

~A 1 k I
may well happen that p1 9 (0,11 , and in such cases, the estimate can

k
clearly be improved. On the other hand, if pI E (0,112 1 then it is the

MLE of the vector p , and if pI E (0,112 -l with sufficiently high

probability, then the estimate p may well have good statistical

properties. In order to have a well-defined estimator, let
A A 12k_p if E (0,1 -

0 otherwise. (3.11)

We show below that the estimator p is in fact asymptotically optimal.

(Were -- z tobe more carefully defined when p1 exists but lies outside

(0,1) , one could undoubtedly obtain an asymptotically equivalent

estimator with better small sample properties.)

Let p denote the MLE of p , and let J(p) denote the information
L k

matrix of the MVB(2 -1) model, that is,

B 2 Zn Q Y

j(P).J.,uv;)~ ~ (3.12)

for u, v EW P . The computation of J(p) J'S' atra iht forward and is omitted.

Theorem 3.1. Let Y I...Yno... be a sequence of iid random vectors

distributed according to MVB(2k-1). Let p be the parameter vector of

the model, and assume that pyE (0,) YyE&O.  Then

y~ k

1i

- - S
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(i) p - p ,and

(ii) ,n (p p) -L-> X~ N(o,J l(p)),

that is, p is strongly consistent and asymptotically equivalent to the MLE.

Proof. The regularity of the MVB(2 k-1) model is easy to verify. We

first prove the consistency of The relationship between p and Q

given in (3.7), (3.9) and (3.10) makes clear that there is a one-to-one

relationship between p and Q when each p > 0 and Q > 0,
y

inequalities which hold by hypothesis. Moreover, the relationship is a

continuous one in a neighborhood of the true p and Q. Thus p - f(Q1,

A a s.
where f is continuous. Now since Q -- > Q , it follows that

f(Q) ai.s> f(Q). Thus, outside of a null set, the sequences f(Q)]

converges to f(Q) as n *. For n sufficiently large, p - f(;)
~.- -

and the sequence (p) will thus converge to p. Therefore, outside of

as
the same null set, p - p and we may write p -.. > p. Now let

be the maximum likelihood estimate of p. Using f for Euclidean

distance, we have

A 2k^ 2
P n I~ -£I p 11 <) : 1- P E (0,1) "1-0

. k_

since p P > p E (0,1) 2 Thus

A - -

Since

A A

%f-(p'2 -J p)L p) + qn (p' -p
A A

we have that p and p are asymptotically equivalent, or,

- > X N(OJ-'(p)).



20

IV. INFERENCE FOR SUBMODELS

Our treatment of the general MVB model is relatively complete. We

are able to give a simple, finite recursive scheme which specifies a

strongly consistent and asymptotically efficient estimator of the para-

meter vector. Nonetheless, the general model is unsatisfactory in one

key respect. For systems with more than a handful of components, the

general model has so many parameters that the sample size required for

our asymptotic results to take hold could well be prohibitive. This

difficulty can be circumvented in situations where one can justify the

k
use of a submodel of MVB(2 -1) whose parameter space is of substantially

lower dimension. In this section, we treat the estimation of the para-

meter vector of a reasonable subiodel with a k-dimensional parameter space.

k_
Let Y be distributed according to the MVB(2 -1) distribution, sub-

ject to the following parametrLc restrictions:

Ps"Pt s W k 9 ) - Iti. (4.1)

If 191 - Itl - J, the common parameter value in (4.1) will be denoted by

p . We may rewrite the mass function of Y in terms of the parameters

Pit J-1,2,...,k, as follows.

k

-1 L.(wE () -: J1  E &fP

lwl -L} .w o
s k- sw 0 0



21

Using the convention (r) r 0 if t > r, the cardinality of the set
t

(SEWk :I sl-j,sw #0 may be seen to be

kIC -k-1)

for any wE.Ok for which 1w! i. Moreover, the cardinality of the set

(WEI k(y): 1 = t) is

k-lyi(,.I-).

It follows that

k-jgl _jYj k (k) - ,"
P(Yiy - (k Y 7T~~ k)k

which we rewrite as

k-I k-yj-, (k) (k-Ijy-t) (4.2)
P(Y y) - l)t1T* P

t-0 t =l

The model whose probability function is displayed in (4.2) is a

k-parameter multivariate Bernoulli distribution which we henceforth refer

to as MVB(k). This model retains some of the essential features of the

general model we have studied. In particular, if Y - MVB(k), then the

components of Y are positively correlated. Moreover, the submodel

preserves the notion that shocks of varying gravity may occur while

making the simplifying assumption that shocks of the same gravity (i.e.,

simultaneously fatal to a fixed number of components) are equiprobable.
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One can easily deduce from this assumption that the components of Y

have identical marginal distributions. Indeed, all subvectors of Y of

a fixed dimension will be identically distributed. The model should be

applicable in reliability experiments in which the components of a system

are inherently similar when viewed one at a time (e.g., the cells of an

automobile battery), yet tend to be positively dependent due to the

increased load on working cells as each failure occurs.

We proceed with our development of an efficient estimator of the

parameter vector of MVB(k). Note that the probability function in (4.2)

depends on an observed vector Z only through ly, the number of ones in

the vector y. Thus, the likelihood function L is proportional to

k N
Spfll -X):l x

where, for xnO,l,...,k,

Q P(fYlj x) P Z P(Y y)
' ly: jyl-'x ~

k k-x-tk k-x kxk () -
(r)tO (kx)(-l)tT i , (4.3)

and N is the number of occurrences of JYJ -x in the sample. If Q was

x

completely unconstrained, the MLE of the vector (QOQI,...,Qk) would be

(IN IN N ). As in the previous section, we will obtain an
n O'n 10.641fn k

estimator of the vector p by inverting the functional relationship

(4.3). Since
-k k

kQk'TI P,

-iA
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we have (assuming Qk > 0)

Qk-l k[_!lj1

Qk P1

which yields

Pl " (1/Qk. (44)
P Q k +  "1k Q -

Now, suppose pl,...,p,_1 have been expressed as functions of the Q's for

a fixed x between 2 and k-1. We then solve the equation

Qk-x k Xk-x X- x-1. x-) (4.5)

ktrO tJ1

for PxW We note that (4.5) may be rewritten as

Q- + X)j ' x-t (X t)
Qk-x k )[ -j(+) x - t + IxQk x J1i t=l t -tl

so that

xk-l x (X)-

- (x) (lQk

X1(x; - 1.]

X l()(.L) t  PJ xt (4.6)

tal Jol

Finally, we may solve the equation

.k... --Z :. : _'-_L? .L-IZ ........ . ... = ......
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k k
Qk IT .Pj

to obtain

k-I (k)
Pk Qk PJ (4.7)

A A

An estimate for p is obtained by replacing Q and p by Q and p

in equations (4.4) - (4.7). Such an estimator is, of course, undefined

when N a 0. However, if we define p to be the estimator obtained
k

from equations (4.4) - (4.7) when the estimator exists and lies in
k A

[0,1]k and define p L 0 otherwise, we can establish the following

Theorem 4.1. Let zL be the maximum likelihood estimator of p , and

assume that p E (0,1) Then p is strongly consistent and is asympto-

tically equivalent to !L" In particular,

A -1(p - p) ,N(,'(p)),

where J(p) is the information matrix for the model MVB(k).

The proof of Theorem 4.1 is similar to that of Theorem 3.1, and is

omitted.

In their paper on maximum likelihood estimation for the multivariate

exponential distribution, Proschan and Sullo (1976) study in detail the

submodel in which the only shocks which occur with positive probability

are shocks fatal to single components only or the universal shock which
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is fatal to all components simultaneously. The analogue of this submodel

in our context is the MVB distribution subject to the restriction that

Ps8 1 s < lei < k.

This is a k+ 1 parameter submodel for which we have obtained the follow-

ing results: Direct maximum likelihood succeeds to the extent that the

MLE may be identified explicitly as a function of the smallest root of a

certain kth degree polynomial. Moreover, we are able to give a simple

iterative procedure which converges to the desired root. The approach

taken in our study of this submodel differs completely from that taken

in this paper. Full details appear in Boyles and Samaniego (1980).

The two submodels of MVB(2 k-1) discussed above serve to illustrate

the fact that one may model the behavior of positively dependent compo-

nents in reliability experiments in such a way that (1) the parameter

space has a manageable dimension and (2) efficient estimation of parame-

tersis tractable and computationally feasible. Moreover, the submodels

considered here correspond to realistic constraints, that is, represent

situations in which (a) components seem to have the same probabilistic

behavior when viewed one at a time, or (b) among shocks fatal to more

than one component, only the catastrophic or universal shock is deemed

important or at all likely.
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V. A MONTE CARLO STUDY

In the preceding sections we have derived the asymptotic properties
Ak

of the estimator p for the parameter p of the MVB(2 k-1) and KVB(k)

models. In particular, P(p - MLE] -- I as sample size -. w. We now employ

Monte Carlo simulations to investigate the rate of this convergence as a

function of sample size and the true parameter p.

Table I below summarizes the bivariate case ku 2 for the fixed

sample size n-50. For each parameter vector, P(p - MLE) is the observed

frequency of the event p - MLE, based on 100 simulations.
A

Table I shows that p "works well," i.e., equals the XLE with proba-

bility near 1, when shocks are "rare," i.e., when the components of p

are "close" to 1. In other situations, it is evident that p may perform

quite poorly. As we should expect from symmetries in the MVB parametri-

zation, the performance of p appears to be invariant with respect to

permutations of plO and pO. One might also suspect that p should work

better in the submodel than the full model, since the former has fewer

parameters. However, Table 1 does not support this conjecture. Table I

does show that the performance of p is sensitive to certain order re-

lations among the components of p. In particular, p performs best

when at least one of p10 and p0 1 is greater than p1l.
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Table 1. 100 x P(p ML] (k-2.,n-50).

Pi P2  Pl o  PO1  P1 1  Full Model Submodel

0.1 0.1 0.1 0.1 0.1 7 6

0.1 0.5 0.1 0.1 0.5 17 24

0.1 0.9 0.1 0.1 0.9 37 37

0.1 0.5 0.1 24

0.1 0.5 0.5 65

0.1 0.5 0.9 55

0.1 0.9 0.1 34

0.1 0.9 0.5 89

0.1 0.9 0.9 72

0.5 0.1 0.1 23

0.5 0.1 0.5 73

0.5 0.1 0.9 57

0.5 0.1 0.5 0.5 0.1 66 65

0.5 0.5 0.5 0.5 0.5 98 97

0.5 0.9 0.5 0.5 0.9 69 75 e
0.5 0.9 0.1 87

0.5 0.9 0.5 100

0.5 0.9 0.9 95

0.9 0.1 0.1 34

0.9 0.1 0.5 92

0.9 0.1 0.9 83

0.9 0.5 0.1 88

0.9 0.5 0.5 100

0.9 0.5 0.9 93

0.9 0.1 0.9 0.9 0.1 98 98

0.9 0.5 0.9 0.9 0.5 100 100

0.9 0.9 0.9 0.9 0.9 100 99

________________
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A similar study was carried out for the trivariate case k- 3 and

the fixed sample size n- 50, with results similar to those of the pre-

ceding case. To save space, we present only a small portion of this

study in Table 2 below.

Table 2. 100 x PP- MLE) (k-3,n-50).

Pl PlO0 Polo Po0l P2 P1 10 P1 0 1I P0 1 1 P3 p P il l  Full Sub-
Model Model

0.70 0.70 0.70 82 78

0.70 0.70 0.90 88 68

0.70 0.90 0.70 56 80

0.70 0.90 0.90 58 73

0.90 0.70 0.70 98 93

0.90 0.70 0.90 97 77

0.90 0.90 0.70 88 100

0.90 0.90 0.90 95 93

Table 2 shows again that p works well in the "rare shocks" region

of the parameter space, although a comparison of Tables I and 2 shows

that the boundaries of this region depend on the dimension of the model.

Once again the submodel does not show a clear advantage over the full

model. The submodel performs best when the ordering pI > P7 > P3 obtains,

but the full model does not appear to be sensitive to order restrictions

in this case.

Tables 3 and 4 below illustrate the large-sample behavior of p.

• _ -. : ? .... _9
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Table 3. 100 x P(p MLE] (Full modelk-3,large samples).

Sample Size

Plipol o0OOO1 P1 10PloPop 1  Pill 100 200 300 400 500 600 700 800 900 1000

0.30 0.30 0.30 4 4 8 14 13 13 17 24 18 22

0.30 0.50 0.70 22 37 49 55 61 67 70 69 71 73

0.50 0.30 0.70 23 34 45 57 68 74 78 85 88 91

0.50 0.50 0.50 44 82 82 92 91 94 92 95 97 99

0.50 0.70 0.30 47 69 80 79 80 90 88 92 93 93

0.70 0.50 0.30 65 90 95 99 100 100 99 100 100 100

0.70 0.70 0.70 94 100 100 100 100 100 100 100 100 100

0.90 0.90 0.90 100 100 100 100 100 100 100 100 100 100

Table 4. 100 x Pp 'MLE] (Submodel,k-3,large samples).

Sample Size

SP2  P3  100 200 300 400 500 600 700 800 900 1000

0.30 0.30 0.30 1 3 0 4 12 12 16 18 18 19

0.30 0.50 0.70 18 21 31 42 39 53 66 62 67 70

0.50 0.30 0.70 21 39 38 49 50 56 64 69 68 67

0.50 0.50 0.50 47 71 83 89 94 93 96 93 97 98

0.50 0.70 0.30 69 86 90 90 91 94 92 98 100 97

0.70 0.50 0.30 67 89 96 100 100 100 100 100 100 100

0.70 0.70 0.70 96 98 100 100 100 100 100 100 100 100

0.90 0.90 0.90 100 100 100 100 100 100 100 100 100 100
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The rate of convergence of Plp -MtIL] to 1 increases dramatically in

both models as we move toward rare shock parameter values. The parameter

vectors are arranged in increasing lexicographical order, and in both

models this rate of convergence is evidently increasing with respect to

this ordering.

Our final study involves the performance of p f or small and moderate

sample sizes. Our simulations have shown that here p will perform very

poorly except in the rare shock case. In the case of very rare shocks

(i.e., all components of p greater than 0.90) we found that the event
A

p - MLE obtained in more than 847. of 170,100 simulations performed with

very small samples (n -1,2,...,7), and in more than 677% of 72,900 simu-

lations performed with moderate sample sizes (n -10,20,30). It is notable

that our estimation procedure works fairly well even when the sample size

is less than the dimension of the parameter vectors. The explanation for

this unexpected result is related to the fact that p appears to work

better in very small samples than for moderate sample sizes. This may be

attributed to the fact that, for very rare shocks and very small samples,

only a few data configurations possess a non-negligible probability of

occurring, and that in fact those turn out to be configurations for which

p works. With moderate sample sizes this restriction is dropped, and

the asymptotic properties have not yet taken hold, hence we observe a

decline in performance.
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Our simulations have shown that p performs very well in large

samples whenever the assumption of moderately rare shocks (e.g., all

components of p > 0.70) is appropriate. Under stronger assumptions

(e.g., all components of p >_ 0.90) our estimation procedure works fairly

well at small and moderate sample sizes, The simulations also show

that the estimation procedure is more sensitive to the parameter values

corresponding to low-gravity shocks than to the parameter values corres-

ponding to high-gravity shocks. This should be taken into account when

assessing the usefulness of our procedure in a given situation.

VI. DISCUSSION AND CONCLUSIONS

We have described in this paper a multivariate Bernoulli distribu-

tion which may be viewed as a shock model in reliability. It is a dis-

crete analogue of the multivariate exponential distribution of Marshall

and Olkin (1967) but, in fact, serves as a discrete version of any con-

tinuous model for which component lifetimes are modeled as minima of

waiting times for selectively fatal shocks. Asymptotically optimal

estimators have been given in closed form, both for the general model

MVB(2 k-1) and for a natural submodel MVB(k) with a parameter space of

substantially lower dimension, The estimators produced are only of

value when they are equal to the MLE, since we have defined them quite

arbitrarily elsewhere. We have investigated the rate at which P(p OMtLE)

tends to one through a Monte Carlo study.

--.-- --. -
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The Monte Carlo study makes the domain of applicability of our

results rather clear. We have found that P(pffMLE) is high for moderate

sample sizes only when the shocks in the model (or its submodel) are rare.

This has been found to be particularly true for shocks affecting only one

or possibly a small number of components. The method of estinkition is

somewhat more robust with respect to the rareness of shocks of greater

gravity. As Beuhler (1957) has pointed out, reliability experiments

often deal with highly reliable systems in which the probability of

failure of any given component is very low. It naturally follows that

the shocks affecting such components occur only rarely. Thus, the

method of estimation advanced in this paper tends to work well in a class

of problems that occur frequently in practice.

The Monte Carlo study has also revealed that the rate at which

P(p MLE) -. 1 is about the same for the full model and for its submodel.

In a sense, this is a disappointing result, since one would hope to gain

some advantage when one dramatically reduces the dimension of the parameter

space. We should emphasize, however, that the rate of convergence studied

in Section V does not discredit the submodel. It is a comment only on the

inversion process involved in obtaining our estimator. There is a second

convergence rate of interest in our problem, namely, the rate at which the

asymptotic theory of maximum likelihood estimation takes hold. It is well

known that this rate is affected by the size of the model, and it is in

this domain that we expect the advantage of MVB(k) over MVR(2 k-1) to show

up. When MVB(k) is appropriate as a model, we expect that the use of

k_
MVB(2 -1) would be very costly in terms of the efficiency of the MLE.

ftftNWMWA-ft---N-.-- I
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There are a number of issues that we postpone for future investiga-

tions. Of particular interest is the development of modeling and infer-

ence for larger classes of MVB distributions with positive dependence.

In this regard, inference for the class of all MVB distributions with

positively correlated components may be feasible using the general repre-

sentation theorem for MVB distributions developed by Bahadur (1961) and

Lazarsfeld.

few



34

REFERENCES

Bahadur, R.R. (1961). A representation of the joint distribution of

responses to n dichotomous items. In Studies In Item Analysis

and Prediction, H. Solomon, Editor. Stanford University Press,

Stanford, CA.

Boyles, R. and Samaniego F. (1980). Maximum likelihood estimation for

a discrete multivariate shock model. Technical Report No. 21,

Division of Statistics, University of California, Davis.

Buehler, R.J. (1957). Confidence intervals for the product of two

binomial probabilities. Journal of the American Statistical

Association, 52, 482-93.

Esary, J.D. and Proschan, F. (1972). Relationships among some concepts

of bivariate dependence. Annals of Mathematical Statistics, 43,

651-5.

Marshall, A. and Olkin, I. (1967). A multivariate exponential

distribution. Journal of the American Statistical Association,

62, 30-44.

Proschan, F. and Sullo, P. (1976). Maximum likelihood estimation for a

multivariate exponential distribution. Journal of the American

Statistical Association, 71, 465-72.

Shaked, M. (1975). On concepts of dependence for multivariate

distributions. Ph.D. thesis, Department of Statistics, University

of Rochester, Rochester, N.Y.

I


